Perpustakaan STMIK Pradnya Paramita Malang

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

SKRIPSI Sistem Informasi

ANALISIS SENTIMEN PEMBELIAN BAHAN BAKAR MINYAK PADA APLIKASI MYPERTAMINA DENGAN METODE NAIVE BAYES CLASSIFIER DAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

Armawan Damai Komang I - Nama Orang;

ANALISIS SENTIMEN PEMBELIAN BAHAN BAKAR MINYAK PADA
APLIKASI MyPertamina DENGAN METODE NAIVE BAYES CLASSIFIER DAN
SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
I Komang Damai Armawan1)
, Mochamad Husni2)
, Tubagus M. Akhriza3)
STMIK PPKIA Pradnya Paramita Malang
komang.armawan.27@gmail.com1)
, husni@stimata.ac.id2)
, akhriza@stimata.ac.id3)
Abstract
The implementation of the MyPertamina application policy for subsidized fuel purchases has
received various responses from the public, expressed through social media. These responses can
be classified into neutral, positive, and negative feedback. Manual analysis can be time-consuming,
so the Naive Bayes Classifier (NBC) method can be used for quick and accurate sentiment analysis
of public responses to the implementation of the MyPertamina application for subsidized fuel
purchases. The research aims to analyze sentiment using the NBC method and implement the
Synthetic Minority Oversampling Technique (SMOTE) on the application of MyPertamina for
subsidized fuel purchases in the community. The dataset in this study is divided into three ratios:
30% for testing set, 40%, and 50%. The sentiment analysis results using the NBC and SMOTE
classification methods with a 30% training set ratio show the best outcome. Initially, there were
972 data points, which were preprocessed to 712, and then the SMOTE algorithm was implemented
to balance the training set. The results showed that 38% were neutral responses, 35% were
positive, and 27% were negative, with an accuracy of 84%.


Ketersediaan
19510026001.41 A Iko Skr SistemInformasiPerpus STMIKTersedia
Informasi Detail
Judul Seri
-
No. Panggil
001.41 A Iko Skr SistemInformasi
Penerbit
: .,
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
I Komang Damai Armawan
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • ANALISIS SENTIMEN PEMBELIAN BAHAN BAKAR MINYAK PADA APLIKASI MYPERTAMINA DENGAN METODE NAIVE BAYES CLASSIFIER DAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan STMIK Pradnya Paramita Malang
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik