Perpustakaan STMIK Pradnya Paramita Malang

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

SKRIPSI Sistem Informasi

PERBANDINGAN AKURASI ANTARA METODE K-NEAREST NEIGHBORD (KNN) DAN ARTIFICIAL NEURAL NETWORK (ANN) UNTUK KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA KABUPATEN/KOTA DI PULAU JAWA

Putri Widyadhana Garwita - Nama Orang;

PERBANDINGAN AKURASI ANTARA METODE K-NEAREST NEIGHBOR
(KNN) DAN ARTIFICIAL NEURAL NETWORK (ANN) UNTUK KLASIFIKASI
INDEKS PEMBANGUNAN MANUSIA KABUPATEN/KOTA DI PULAU JAWA
Garwita Widyadhana Putri1), Mochamad Husni2) , Rahayu Widayanti3)
Sistem Informasi, STMIK PPKIA Pradnya Paramita Malang
witawidyaa12@gmail.com 1)
, husni@stimata.ac.id 2)
, rahayu@stimata.ac.id 3)
Abstract
In 2021, 56.1% of Indonesia's population was on the Java Island, so the government needs to do
mapping for policy making in various fields. Classifying the Human Development Index (HDI) can
be done to assist the government in measuring the results of human resource development. The
purpose of this research is to compare the accuracy results of two methods, namely K-Nearest
Neighbor (KNN) and Artificial Neural Network (ANN) to classify the HDI of districts/cities in Java
Island. The results showed that the application of KNN and ANN methods on the same data resulted
in different accuracy values. In the KNN method, using 80%-20% training and testing data, the K=7
value shows the highest accuracy rate [95.83%]. While the ANN method with the split 70%-30%,
resulting in the highest accuracy value [94.44%]. By calculation, KNN method produces a higher
accuracy value. However, the evaluation results using Fold Cross Validation show that the best KNN
model is at K=3, with a mean score 84.85%. While in the model of the highest accuracy value of the
ANN method, there is overfitting. Based on this comparison, it can be concluded that the highest
accuracy value of both KNN and ANN methods both have weaknesses.


Ketersediaan
19510003001.42 P Gar Skr SistemInfoermasiPerpus STMIKTersedia
Informasi Detail
Judul Seri
-
No. Panggil
001.42 P Gar Skr SistemInfoermasi
Penerbit
: .,
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Garwita Widyadhana Putri
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • PERBANDINGAN AKURASI ANTARA METODE K-NEAREST NEIGHBORD (KNN) DAN ARTIFICIAL NEURAL NETWORK (ANN) UNTUK KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA KABUPATEN/KOTA DI PULAU JAWA
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan STMIK Pradnya Paramita Malang
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik