Perpustakaan STMIK Pradnya Paramita Malang

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title

JURNAL INTERNASIONAL

Journal of Theoritical and Apllied Information Technology


Nowadays with linked open data, we can access numerous data over the world that more easily and semantically. This research focus on technique for accessing linked open government data LOGD from SPARQL Endpoint for resulting time series historical of Forest Fire data. Moreover, the data will automatically uses as background knowledge for predicting the number of forest fire and size of burn area with machine learning. By using this technique, LOGD could be used as an online backgorund knowledge that provide time series data for predicting trend of fire disaster. In evaluation, mean square error MSE and root mean square error RMSE are used to evaluate the performance of prediction in this research. We also compare several algorithm such as Linear Regression, Neural Network and SVM in different window size.


Ketersediaan
JI03220021004.0285 JATIT J JurnalInternasionalPerpus STMIK (Jurnal Internasional)Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
004.0285 JATIT J JurnalInternasional
Penerbit
USA : JATIT., 2014
Deskripsi Fisik
-
Bahasa
English
ISBN/ISSN
1992 8645
Klasifikasi
004.0285
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 62 Nomor 3 Tahun 2014
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Komentar

Anda harus login sebelum memberikan komentar

Perpustakaan STMIK Pradnya Paramita Malang
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik